5.1: Rules of Exponents (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    18354
    • 5.1: Rules of Exponents (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Simplify expressions using the rules of exponents.
    • Simplify expressions involving parentheses and exponents.
    • Simplify expressions involving \(0\) as an exponent.

    Product, Quotient, and Power Rule for Exponents

    If a factor is repeated multiple times, then the product can be written in exponential form \(x_{n}\). The positive integer exponent \(n\) indicates the number of times the base \(x\) is repeated as a factor

    5.1: Rules of Exponents (2)

    For example,

    \(5^{4}=5\cdot 5\cdot 5\cdot 5\)

    Here the base is \(5\) and the exponent is \(4\). Exponents are sometimes indicated with the caret (^) symbol found on the keyboard: \(5\)^\(4 = 5*5*5*5\).

    Next consider the product of \(2^{3}\) and \(2^{5}\),

    5.1: Rules of Exponents (3)

    Expanding the expression using the definition produces multiple factors of the base, which is quite cumbersome, particularly when \(n\) is large. For this reason, we will develop some useful rules to help us simplify expressions with exponents. In this example, notice that we could obtain the same result by adding the exponents.

    \(2^{3}\cdot 2^{5}=2^{3+5}=2^{8}\)

    In general, this describes the product rule for exponents. If \(m\) and \(n\) are positive integers, then

    \[x^{m}\cdot x^{n} = x^{m+n}\]

    In other words, when multiplying two expressions with the same base, add the exponents.

    Example \(\PageIndex{1}\)

    Simplify: \(10^{5}\cdot 10^{18}\).

    Solution:

    \(\begin{aligned} 10^{5}\cdot 10^{18}&=10^{5+18} \\ &=10^{23} \end{aligned}\)

    Answer:

    \(10^{23}\)

    In the previous example, notice that we did not multiply the base 10 times itself. When applying the product rule, add the exponents and leave the base unchanged.

    Example \(\PageIndex{2}\)

    Simplify: \(x^{6}⋅x^{12}⋅x\).

    Solution:

    Recall that the variable \(x\) is assumed to have an exponent of \(1: x=x^{1}\).

    \(\begin{aligned} x^{6}\cdot x^{12}\cdot x &=x^{6}\cdot x^{12}\cdot x^{1} \\ &=x^{6+12+1} \\ &=x^{19} \end{aligned}\)

    Answer:

    \(x^{19}\)

    The base could be any algebraic expression.

    Example \(\PageIndex{3}\)

    Simplify: \((x+y)^{9} (x+y)^{13}\).

    Solution:

    Treat the expression \((x+y)\) as the base.

    \(\begin{aligned} (x+y)^{9}(x+y)^{13}&=(x+y)^{9+13} \\ &=(x+y)^{22} \end{aligned}\)

    Answer:

    \((x+y)^{22}\)

    The commutative property of multiplication allows us to use the product rule for exponents to simplify factors of an algebraic expression.

    Example \(\PageIndex{4}\)

    Simplify: \(2x^{8}y⋅3x^{4}y^{7}\).

    Solution:

    Multiply the coefficients and add the exponents of variable factors with the same base.

    \(\begin{aligned} 2x^{8}y\cdot 3x^{4}y^{7}&=2\cdot 3\cdot x^{8}\cdot x^{4}\cdot y^{1}\cdot y^{7} &\color{Cerulean}{Commutative\:property} \\ &=6\cdot x^{8+4}\cdot y^{1+7} &\color{Cerulean}{Power\:rule\:for\:exponents} \\ &=6x^{12}y^{8} \end{aligned}\)

    Answer:

    \(6x^{12}y^{8}\)

    Next, we will develop a rule for division by first looking at the quotient of \(2^{7}\) and \(2^{3}\).

    5.1: Rules of Exponents (4)

    Here we can cancel factors after applying the definition of exponents. Notice that the same result can be obtained by subtracting the exponents.

    \[\frac{2^{7}}{2^{3}}=2^{7-3}=2^{4} \nonumber\]

    This describes the quotient rule for exponents. If \(m\) and \(n\) are positive integers and \(x≠0\), then

    \[\frac{x^{m}}{x^{n}}=x^{m-n} \nonumber\]

    In other words, when you divide two expressions with the same base, subtract the exponents.

    Example \(\PageIndex{5}\)

    Simplify: \(\frac{12y^{15}}{4y^{7}}\).

    Solution:

    Divide the coefficients and subtract the exponents of the variable \(y\).

    \(\begin{aligned} \frac{12y^{15}}{4y^{7}}&=\frac{12}{4}\cdot y^{15-7}\\ &=3y^{8} \end{aligned}\)

    Answer:

    \(3y^{8}\)

    Example \(\PageIndex{6}\)

    Simplify: \(\frac{20x^{10}(x+5)^{6}}{10x^{9}(x+5)^{2}}\)

    Solution:

    \(\begin{aligned} \frac{20x^{10}(x+5)^{6}}{10x^{9}(x+5)^{2}}&=\frac{20}{10}\cdot x^{10-9}\cdot (x+5)^{6-2} \\ &=2x^{1}(x+5)^{4} \end{aligned}\)

    Answer:

    \(2x(x+5)^{4}\)

    Now raise \(2^{3}\) to the fourth power as follows:

    5.1: Rules of Exponents (5)

    After writing the base \(2^{3}\) as a factor four times, expand to obtain \(12\) factors of \(2\). We can obtain the same result by multiplying the exponents.

    \((2^{3})^{^{4}} = 2^{3\cdot 4} = 2^{12}\)

    In general, this describes the power rule for exponents. Given positive integers \(m\) and \(n\), then

    \[(x^{m})^{^{n}}=x^{m\cdot n}\]

    In other words, when raising a power to a power, multiply the exponents.

    Example \(\PageIndex{7}\)

    Simplify: \((y^{6})^{^{7}}=y^{6\cdot 7}\)

    Solution:

    \(\begin{aligned} (y^{6})^{^{7}}&=y^{6\cdot 7} \\ &=y^{42} \end{aligned}\)

    Answer:

    \(y^{42}\)

    To summarize, we have developed three very useful rules of exponents that are used extensively in algebra. If given positive integers \(m\) and \(n\), then

    • Product rule: \[x^{m}\cdot x^{n}=x^{m+n}\]
    • Quotient rule: \[\frac{x^{m}}{x^{n}}=x^{m-n}, x\neq 0\]
    • Power rule: \[(x^{m})^{^{n}} = x^{m\cdot n}\]

    Exercise \(\PageIndex{1}\)

    Simplify: \(y^{5}⋅(y^{4})^{^{6}}\).

    Answer

    \(y^{29}\)

    Power Rules for Products and Quotients

    Now we consider raising grouped products to a power. For example,

    \(\begin{aligned} (xy)^{4} &= xy\cdot xy\cdot xy\cdot xy \\ &=x\cdot x\cdot x\cdot x\cdot y\cdot y\cdot y\cdot y\quad\color{Cerulean}{Commutative\:property} \\ &=x^{4}\cdot y^{4} \end{aligned}\)

    After expanding, we have four factors of the product \(xy\). This is equivalent to raising each of the original factors to the fourth power. In general, this describes the power rule for a product. If \(n\) is a positive integer, then

    \[(xy)^{n}=x^{n}y^{n}\]

    Example \(\PageIndex{8}\)

    Simplify: \((2ab)^{7}=2^{7}a^{7}b^{7}\).

    Solution:

    We must apply the exponent \(7\) to all the factors, including the coefficient, \(2\).

    \(\begin{aligned} (2ab)^{7}&=2^{7}a^{7}b^{7} \\ &=128a^{7}b^{7} \end{aligned}\)

    If a coefficient is raised to a relatively small power, then present the real number equivalent, as we did in this example: \(2^{7}=128\).

    Answer:

    \(128a^{7}b^{7}\)

    In many cases, the process of simplifying expressions involving exponents requires the use of several rules of exponents.

    Example \(\PageIndex{9}\)

    Simplify: \((3xy^{3})^{^{4}}\).

    Solution:

    \(\begin{aligned} (3xy^{3})^{^{4}}&=3^{4}\cdot x^{4}\cdot (y^{3})^{^{4}} &\color{Cerulean}{Power\:rule\:for\:products} \\ &=3^{4}x^{4}y^{3\cdot 4} &\color{Cerulean}{Power\:rule\:for\:exponents} \\ &=81x^{4}y^{12} \end{aligned}\)

    Answer:

    \(81x^{4}y^{12}\)

    Example \(\PageIndex{10}\)

    Simplify: \((4x^{2}y^{5}z)^{^{3}}\).

    Solution:

    \(\begin{aligned} (4x^{2}y^{5}z)^{^{3}}&=4^{3}\cdot(x^{2})^{^{3}}\cdot (y^{5})^{^{3}}\cdot z^{3} \\ &=64x^{6}y^{15}z^{3} \end{aligned}\)

    Answer:

    \(64x^{6}y^{15}z^{3}\)

    Example \(\PageIndex{11}\)

    Simplify: \([5(x+y)^{3}]^{^{3}}\)

    Solution:

    \(\begin{aligned} [5(x+y)^{3}]^{^{3}} &=5^{3}\cdot (x+y)^{9} \\ &=125(x+y)^{9} \end{aligned}\)

    Answer:

    \(125(x+y)^{9}\)

    Next, consider a quotient raised to a power.

    \(\begin{aligned} \left( \frac{x}{y} \right) ^{4} &= \frac{x}{y}\cdot \frac{x}{y}\cdot \frac{x}{y}\cdot \frac{x}{y} \\ &=\frac{x\cdot x\cdot x\cdot x}{y\cdot y\cdot y\cdot y} \\ &=\frac{x^{4}}{y^{4}} \end{aligned}\)

    Here we obtain four factors of the quotient, which is equivalent to the numerator and the denominator both raised to the fourth power. In general, this describes the power rule for a quotient. If \(n\) is a positive integer and \(y≠0\), then

    \[\left( \frac{x}{y} \right) ^{n} = \frac{x^{n}}{y^{n}}\]

    In other words, given a fraction raised to a power, we can apply that exponent to the numerator and the denominator. This rule requires that the denominator is nonzero. We will make this assumption for the remainder of the section.

    Example \(\PageIndex{12}\)

    Simplify: \(\left(\frac{3a}{b} \right) ^{3}\)

    Solution:

    First, apply the power rule for a quotient and then the power rule for a product.

    \(\begin{aligned} \left(\frac{3a}{b} \right) ^{3}&=\frac{(3a)^{3}}{b^{3}} &\color{Cerulean}{Power\:rule\:for\:a\:quotient} \\ &=\frac{3^{3}\cdot a^{3}}{b^{3}} &\color{Cerulean}{Power\:rule\:for\:a\:product} \\ &=\frac{27a^{3}}{b^{3}} \end{aligned}\)

    Answer:

    \(\frac{27a^{3}}{b^{3}}\)

    In practice, we often combine these two steps by applying the exponent to all factors in the numerator and the denominator.

    Example \(\PageIndex{13}\)

    Simplify: \(\left( \frac{ab^{2}}{2c^{3}} \right)^{5}\)

    Solution:

    Apply the exponent \(5\) to all of the factors in the numerator and the denominator.

    \(\begin{aligned} \left( \frac{ab^{2}}{2c^{3}} \right)^{5}&=\frac{a^{5}(b^{2})^{^{5}}}{2^{5}(c^{3})^{^{5}}} \\ &=\frac{a^{5}b^{10}}{32c^{15}} \end{aligned}\)

    Answer:

    \(\frac{a^{5}b^{10}}{32c^{15}}\)

    Example \(\PageIndex{14}\)

    Simplify: \(\left( \frac{5x^{5}(2x-1)^{4}}{3y^{7}} \right) ^{2}\)

    Solution:

    \(\begin{aligned} \left( \frac{5x^{5}(2x-1)^{4}}{3y^{7}} \right) ^{2} &=\frac{(5x^{5}(2x-1)^{4})^{2}}{(3y^{7})^{^{2}}} &\color{Cerulean}{Power\:rule\:for\:a\:quotient} \\ &=\frac{5^{2}\cdot (x^{5})^{^{2}}\cdot [(2x-1)^{4}]^{2}}{3^{2}\cdot (y^{7})^{^{2}}} &\color{Cerulean}{Power\:rule\:for\:products} \\ &=\frac{25x^{10}(2x-1)^{8}}{9y^{14}} &\color{Cerulean}{Power\:rule\:for\:exponents} \end{aligned}\)

    Answer:

    \(\frac{25x^{10}(2x-1)^{8}}{9y^{14}}\)

    It is a good practice to simplify within parentheses before using the power rules; this is consistent with the order of operations.

    Example \(\PageIndex{15}\)

    Simplify: \(\left( \frac{-2x^{3}y^{4}z}{xy^{2}} \right)^{4}\)

    Solution:

    \(\begin{aligned} \left( \frac{-2x^{3}y^{4}z}{xy^{2}} \right)^{4}&=(-2\cdot x^{3-1}\cdot y^{4-2}\cdot z)^{4} &\color{Cerulean}{Simplify\:within\:the\:parentheses\:first.} \\ &=(-2\cdot x^{2}\cdot y^{2} \cdot z)^{4} &\color{Cerulean}{Apply\:the\:power\:rule\:for\:a\:product.} \\ &=(-2)^{4}\cdot (x^{2})^{^{4}}\cdot (y^{2})^{^{4}}\cdot z^{4}&\color{Cerulean}{Apply\:the\:power\:rule\:for\:exponents.} \\ &=16x^{8}y^{8}z^{4} \end{aligned}\)

    Answer:

    \(16x^{8}y^{8}z^{4}\)

    To summarize, we have developed two new rules that are useful when grouping symbols are used in conjunction with exponents. If given a positive integer \(n\), where \(y\) is a nonzero number, then

    • Power rule for a product: \[(xy)^{n} = x^{n}y^{n}\]
    • Power rule for a quotient: \[\left( \frac{x}{y} \right)^{n} = \frac{x^{n}}{y^{n}}\]

    Exercise \(\PageIndex{2}\)

    Simplify: \(\left(\frac{4x^{2}(x-y)^{3}}{3yz^{5}} \right)^{3}\)

    Answer

    \(\frac{64x^{6}(x-y)^{9}}{27y^{3}z^{15}}\)

    Zero as an Exponent

    Using the quotient rule for exponents, we can define what it means to have \(0\) as an exponent. Consider the following calculation:

    \(\color{Cerulean}{1}\color{black}{=\frac{8}{8}=\frac{2^{3}}{2^{3}}=2^{3-3}=}\color{Cerulean}{2^{0}}

    Eight divided by \(8\) is clearly equal to \(1\), and when the quotient rule for exponents is applied, we see that a \(0\) exponent results. This leads us to the definition of zero as an exponent, where \(x≠0\):

    \[x^{0}=1\]

    It is important to note that \(0^{0}\) is undefined. If the base is negative, then the result is still \(+1\). In other words, any nonzero base raised to the \(0\) power is defined to be \(1\). In the following examples, assume all variables are nonzero.

    Example \(\PageIndex{16}\)

    Simplify:

    1. \((-5)^{0}\)
    2. \(-5^{0}\)

    Solution:

    1. Any nonzero quantity raised to the \(0\) power is equal to \(1\).

    \((-5)^{0}=1\)

    b.In the example \(−5^{0}\), the base is \(5\), not \(−5\).

    Answer:

    1. \(1\)
    2. \(-1\)

    Example \(\PageIndex{17}\)

    Simplify:

    \((5x^{3}y^{0}z^{2})^{^{2}}\).

    Solution:

    It is good practice to simplify within the parentheses first.

    \(\begin{aligned} (5x^{3}\color{Cerulean}{y^{0}}\color{black}{z^{2})^{^{2}}}&=(5x^{3}\cdot\color{Cerulean}{1}\color{black}{\cdot z^{2})^{2}} \\ &=(5x^{3}z^{2})^{2} \\ &=5^{2}x^{3\cdot 2}z^{2\cdot 2} \\ &=25x^{6}z^{4} \end{aligned}\)

    Answer:

    \(25x^{6}z^{4}\)

    Example \(\PageIndex{18}\)

    Simplify:

    \(\left( -\frac{8a^{10}b^{5}}{5c^{12}d^{14}} \right) ^{0}\).

    Solution:

    \(\left( -\frac{8a^{10}b^{5}}{5c^{12}d^{14}} \right) ^{0} =1\)

    Answer:

    \(1\)

    Exercise \(\PageIndex{3}\)

    Simplify:

    \(5x^{0}\) and \((5x)^{0}\)

    Answer

    \(5x^{0}=5\) and \((5x)^{0}=1\)

    Key Takeaways

    • The rules of exponents allow you to simplify expressions involving exponents.
    • When multiplying two quantities with the same base, add exponents: \(x^{m}⋅x^{n}=x^{m+n}\).
    • When dividing two quantities with the same base, subtract exponents: \(\frac{x^{m}}{x^{n}}=x^{m−n}\).
    • When raising powers to powers, multiply exponents: \((x^{m})^{^{n}}=x^{m⋅n}\).
    • When a grouped quantity involving multiplication and division is raised to a power, apply that power to all of the factors in the numerator and the denominator: \((xy)^{n}=x^{n}y^{n}\) and \((\frac{x}{y})^{n}=\frac{x^{n}}{y^{n}}\).
    • Any nonzero quantity raised to the \(0\) power is defined to be equal to \(1: x^{0}=1\).

    Exercise \(\PageIndex{4}\) Product, Quotient, and Power Rule for Exponents

    Write each expression using exponential form.

    1. \((2x)(2x)(2x)(2x)(2x)\)
    2. \((−3y)(−3y)(−3y)\)
    3. \(−10⋅a⋅a⋅a⋅a⋅a⋅a⋅a\)
    4. \(12⋅x⋅x⋅y⋅y⋅y⋅y⋅y⋅y\)
    5. \(−6⋅(x−1)(x−1)(x−1)\)
    6. \((9ab)(9ab)(9ab)(a^{2}−b)(a^{2}−b)\)
    Answer

    1. \((2x)^{5}\)

    3. \(-10a^{7}\)

    5. \(-6(x-1)^{3}\)

    Exercise \(\PageIndex{5}\) Product, Quotient, and Power Rule for Exponents

    Simplify.

    1. \(2^{7}⋅2^{5}\)
    2. \(3^{9}⋅3\)
    3. \(−2^{4}\)
    4. \((−2)^{4}\)
    5. \(−3^{3}\)
    6. \((−3)^{4}\)
    7. \(10^{13}⋅10^{5}⋅10^{4}\)
    8. \(10^{8}⋅10^{7}⋅10\)
    9. \(\frac{5^{12}}{5^{2}}\)
    10. \(\frac{10^{7}}{10^{10}}\)
    11. \(\frac{10^{12}}{10^{9}}\)
    12. \((7^{3})^{^{5}}\)
    13. \((4^{8})^{^{4}}\)
    14. \(10^{6}⋅(10^{5})^{^{4}}\)
    Answer

    1. \(2^{12}\)

    3. \(−16\)

    5. \(−27\)

    7. \(10^{22}\)

    9. \(5^{10}\)

    11. \(10^{3}\)

    13. \(4^{32}\)

    Exercise \(\PageIndex{6}\) Product, Quotient, and Power Rule for Exponents

    Simplify.

    1. \((−x)^{6}\)
    2. \(a^{5}⋅(−a)^{2}\)
    3. \(x^{3}⋅x^{5}⋅x\)
    4. \(y^{5}⋅y^{4}⋅y^{2}\)
    5. \((a^{5})^{^{2}}⋅(a^{3})^{^{4}}⋅a\)
    6. \((x+1)^{4}(y^{5})^{^{4}}⋅y^{2}\)
    7. \((x+1)^{5}(x+1)^{8}\)
    8. \((2a−b)^{12}(2a−b)^{9}\)
    9. \(\frac{(3x-1)^{5}}{(3x-1)^{2}}\)
    10. \(\frac{(a-5)^{37}}{(a-5)^{13}}\)
    11. \(xy^{2}⋅x^{2}y\)
    12. \(3x^{2}y^{3}⋅7xy^{5}\)
    13. \(−8a^{2}b⋅2ab\)
    14. \(−3ab^{2}c^{3}⋅9a^{4}b^{5}c^{6}\)
    15. \(2a^{2}b^{4}c (−3abc)\)
    16. \(5a^{2}(b^{3})^{^{3}}c^{3}⋅(−2)2a^{3}(b^{2})^{^{4}}\)
    17. \(2x^{2}(x+y)^{5}⋅3x^{5}(x+y)^{4}\)
    18. \(−5xy^{6}(2x−1)^{6}⋅x^{5}y(2x−1)^{3}\)
    19. \(x^{2}y⋅xy^{3}⋅x^{5}y^{5}\)
    20. \(−2x^{10}y⋅3x^{2}y^{12}⋅5xy^{3}\)
    21. \(3^{2}x^{4}y^{2}z⋅3xy^{4}z^{4}\)
    22. \((−x^{2})^{^{3}}(x^{3})^{^{2}}(x^{4})^{^{3}}\)
    23. \(a^{10}⋅\frac{(a^{6})^{^{3}}}{a^{3}}\)
    24. \(\frac{10x^{9}(x^{3})^{^{5}}}{2x^{5}}\)
    25. \(\frac{a^{6}b^{3}}{a^{2}b^{2}}\)
    26. \(\frac{m^{10}n^{7}}{m^{3}n^{4}}\)
    27. \(\frac{20x^{5}y^{12}z^{3}}{10x^{2}y^{10}z}\)
    28. \(\frac{-24a^{16}b^{12}c^{3}}{6a^{6}b^{11}c}\)
    29. \(\frac{16x^{4}(x+2)^{3}}{4x(x+2)}\)
    30. \(\frac{50y^{2}(x+y)^{20}}{10y(x+y)^{17}}\)
    Answer

    1. \(x^{6}\)

    3. \(x^{9}\)

    5. \(a^{23}\)

    7. \((x+1)^{13}\)

    9. \((3x−1)^{3}\)

    11. \(x^{3}y^{3}\)

    13. \(−16a^{3}b^{2}\)

    15. \(−6a^{3}b^{5}c^{2}\)

    17. \(6x^{7}(x+y)^{9}\)

    19. \(x^{8}y^{9}\)

    21. \(27x^{5}y^{6}z^{5}\)

    23. \(a^{25}\)

    25. \(a^{4}b\)

    27. \(2x^{3}y^{2}z^{2}\)

    29. \(4x^{3}(x+2)^{2}\)

    Exercise \(\PageIndex{7}\) Power Rules for Products and Quotients

    Simplify.

    1. \((2x)^{5}\)
    2. \((−3y)^{4}\)
    3. \((−xy)^{3}\)
    4. \((5xy)^{3}\)
    5. \((−4abc)^{2}\)
    6. \(\left(\frac{7}{2x} \right)^{2}\)
    7. \(-\left(\frac{5}{3y} \right)^{3}\)
    8. \((3abc)^{3}\)
    9. \(\left(\frac{-2xy}{3z} \right)^{4}\)
    10. \(\left(\frac{5y}{(2x-1)x}\right)^{3}\)
    11. \((3x^{2})^{^{3}}\)
    12. \((−2x^{3})^{^{2}}\)
    13. \((xy^{5})^{^{7}}\)
    14. \((x^{2}y^{10})^{^{2}}\)
    15. \(\left(\frac{3x^{2}}{y} \right)^{3}\)
    16. \((2x^{2}y^{3}z^{4})^{^{5}}\)
    17. \(\left(\frac{-7ab^{4}}{c^{2}} \right)^{2}\)
    18. \([x^{5}y^{4}(x+y)^{4}]^{5}\)
    19. \([2y(x+1)^{5}]^{3}\)
    20. \((ab^{3})^{^{3}}\)
    21. \(\left(\frac{5a^{2}}{3b} \right)^{4}\)
    22. \(\left(\frac{-2x^{3}}{3y^{2}} \right)^{2}\)
    23. \(\left(\frac{-x^{2}}{y^{3}} \right)^{3}\)
    24. \(\left(\frac{ab^{2}}{3c^{3}d^{2}} \right)^{4}\)
    25. \(\left(\frac{2x^{7}y}{(x-1)^{3}z^{5}} \right)^{6}\)
    26. \((2x^{4})^{^{3}}⋅(x^{5})^{^{2}}\)
    27. \((x^{3}y)^{^{2}}⋅(xy^{4})^{^{3}}\)
    28. \((−2a^{2}b^{3})^{^{2}}⋅(2a^{5}b)^{^{4}}\)
    29. \((−a^{2}b)^{3}(3ab^{4})^{4}\)
    30. \((2x^{3}(x+y)^{4})^{5}⋅(2x^{4}(x+y)^{2})^{3}\)
    31. \(\left(\frac{-3x^{5}y^{4}}{xy^{2}} \right)^{3}\)
    32. \(\left(\frac{-3x^{5}y^{4}}{xy^{2}} \right)^{2}\)
    33. \(\left(\frac{-25x^{10}y^{15}}{5x^{5}y^{10}} \right)^{3}\)
    34. \(\left(\frac{10x^{3}y^{5}}{5xy^{2}} \right)^{2}\)
    35. \(\left(\frac{-24ab^{3}}{6bc} \right)^{5}\)
    36. \(\left(\frac{-2x^{3}y^{16}}{x^{2}y} \right)^{2}\)
    37. \(\left(\frac{30ab^{3}}{3abc} \right)^{3}\)
    38. \(\left(\frac{3s^{3}t^{2}}{2s^{2}t} \right)^{3}\)
    39. \(\left(\frac{6xy^{5}(x+y)^{6}}{3y^{2}z(x+y)^{2}} \right)^{5}\)
    40. \(\left(\frac{-64a^{5}b^{12}c^{2}(2ab-1)^{14}}{32a^{2}b^{10}c^{2}(2ab-1)^{7}} \right)^{4}\)
    41. The probability of tossing a fair coin and obtaining \(n\) heads in a row is given by the formula \(P=(12)^{n}\). Determine the probability, as a percent, of tossing \(5\) heads in a row.
    42. The probability of rolling a single fair six-sided die and obtaining \(n\) of the same faces up in a row is given by the formula \(P=(16)^{n}\). Determine the probability, as a percent, of obtaining the same face up two times in a row.
    43. If each side of a square measures \(2x^{3}\) units, then determine the area in terms of the variable \(x\).
    44. If each edge of a cube measures \(5x^{2}\) units, then determine the volume in terms of the variable \(x\).
    Answer

    1. \(32x^{5}\)

    3. \(−x^{3}y^{3}\)

    5. \(16a^{2}b^{2}c^{2}\)

    7. \(−\frac{125}{27y^{3}}\)

    9. \(\frac{16x^{4}y^{4}}{81z^{4}}\)

    11. \(27x^{6}\)

    13. \(x^{7}y^{35}\)

    15. \(\frac{27x^{6}}{y^{3}}\)

    17. \(\frac{49a^{2}b^{8}}{c^{4}}\)

    19. \(8y^{3}(x+1)^{15}\)

    21. \(\frac{625a^{8}}{81b^{4}}\)

    23. \(−\frac{x^{6}}{y^{9}}\)

    25. \(\frac{64x^{42}y^{6}}{(x−1)^{18}z^{30}}\)

    27. \(x^{9}y^{14}\)

    29. \(−81a^{10}b^{19}\)

    31. \(−27x^{12}y^{6}\)

    33. \(−125x^{15}y^{15}\)

    35. \(\frac{−1024a^{5}b^{10}}{c^{5}}\)

    37. \(\frac{1000b^{6}}{c^{3}}\)

    39. \(\frac{32x^{5}y^{15}(x+y)^{20}}{z^{5}}\)

    41. \(3 \frac{1}{8}\)%

    43. \(A=4x^{6}\)

    Exercise \(\PageIndex{8}\) Zero Exponents

    Simplify. (Assume variables are nonzero.)

    1. \(7^{0}\)
    2. \((−7)^{0}\)
    3. \(−10^{0}\)
    4. \(−3^{0}⋅(−7)^{0}\)
    5. \(8675309^{0}\)
    6. \(5^{2}⋅3^{0}⋅2^{3}\)
    7. \(−3^{0}⋅(−2)^{2}⋅(−3)^{0}\)
    8. \(\frac{5x^{0}}{y^{2}}\)
    9. \((−3)^{2}x^{2}y^{0}z^{5}\)
    10. \(−3^{2}(x^{3})^{2}y^{2}(z^{3})^{0}\)
    11. \(2x^{3}y^{0}z⋅3x^{0}y^{3}z^{5}\)
    12. \(−3ab^{2}c^{0}⋅3a^{2}(b^{3}c^{2})^{0}\)
    13. \((−8xy^{2})^{0}\)
    14. \((2x^{2}y^{3})^{0}\)
    15. \(\frac{9x^{0}y^{4}}{3y^{3}}\)
    Answer

    1. \(1\)

    3. \(−1\)

    5. \(1\)

    7. \(−4\)

    9. \(9x^{2}z^{5}\)

    11. \(6x^{3}y^{3}z^{6}\)

    13. \(1\)

    15. \(3y\)

    Exercise \(\PageIndex{9}\) Discussion Board Topics

    1. René Descartes (1637) established the usage of exponential form: \(a^{2}, a^{3}\), and so on. Before this, how were exponents denoted?
    2. Discuss the accomplishments accredited to Al-Karismi.
    3. Why is \(0^{0}\) undefined?
    4. Explain to a beginning student why \(3^{4}⋅3^{2}≠9^{6}\).
    Answer

    1. Answers may vary

    3. Answers may vary

    5.1: Rules of Exponents (2024)

    FAQs

    What are the 5 rules of exponents? ›

    The different Laws of exponents are:
    • am×an = a. m+n
    • am/an = a. m-n
    • (am)n = a. mn
    • an/bn = (a/b) n
    • a0 = 1.

    What is 1 2 to the exponent of 5? ›

    Where 5 is the exponent of the expression and 1/2 is called the base. Therefore, we can rewrite (1/2)5 = 1/2 × 1/2 × 1/2 ×1/2 × 1/2. ⇒ 1/2 × 1/2 × 1/2 ×1/2 × 1/2 = 1/32 or 0.03125.

    What is 5 to the 5th exponent? ›

    Answer: 5 to the power of 5 can be expressed as 55 = 5 × 5 × 5 × 5 × 5 = 3,125.

    What are the powers of 5? ›

    The sequence of fifth powers of integers is: 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, 161051, 248832, 371293, 537824, 759375, 1048576, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 9765625, ...

    How to do exponents? ›

    If n is a positive integer and x is any real number, then xn corresponds to repeated multiplication xn=x×x×⋯×x⏟n times. We can call this “x raised to the power of n,” “x to the power of n,” or simply “x to the n.” Here, x is the base and n is the exponent or the power.

    What is 5 to the 1 exponent? ›

    Answer: 5 to the power of 1 is 5.

    Where the number 5 is called the base, whereas 1 is the power or exponent of the expression.

    What are the 10 laws of exponents? ›

    The essential laws of exponents are as follows:
    • am × an = a. m+n
    • am / an = a. m-n
    • (am)n = a. mn
    • an / bn = (a/b) n
    • a0 = 1.
    • a-m = 1/a. m
    • a1n=n√a.
    Jul 31, 2023

    What is the rule 4 of exponents? ›

    RULE 4: Quotient Property

    Definition: When dividing two exponents with the same nonzero real number base, the answer will be the difference of the exponents with the same base.

    What is 2 raise to power 5? ›

    Answer: 2 to the power 5 can be expressed as 25 = 2 × 2 × 2 × 2 × 2 = 32.

    How do you type a 5 exponent? ›

    When opening your Word document.
    1. Go to the Insert tab.
    2. Click on the Symbol option under the Symbols group.
    3. Now, click More Symbols. ...
    4. Now, scroll the symbols chart to find the exponent value you want to type in your document.
    5. Once you find the exponent value, select it, and click Insert.
    May 5, 2024

    What is 5 cubed exponents? ›

    Answer: The value of 5 raised to power of 3 is 53 = 125. Explanation: 53 = 5 × 5 × 5 = 125. 53 can also be understood as 5 cubed.

    What is 5 to first power? ›

    Answer: 5 to the power of 1 is 5.

    Let's solve this question by using rules of exponents and power by following steps. Hence, 5 to the power of 1 can be written as 51. Where the number 5 is called the base, whereas 1 is the power or exponent of the expression.

    What are 5 ways exponents are used in the real world? ›

    Exponents are used in Computer Game Physics, pH and Richter Measuring Scales, Science, Engineering, Economics, Accounting, Finance, and many other disciplines. Exponential Growth is a critically important aspect of Finance, Demographics, Biology, Economics, Resources, Electronics and many other areas.

    What is 5 to the third power exponents? ›

    Answer: The value of 5 raised to power of 3 is 53 = 125. Explanation: 53 = 5 × 5 × 5 = 125. 53 can also be understood as 5 cubed.

    Top Articles
    Sermon and Worship Resources
    Sermon and Worship Resources
    Antisis City/Antisis City Gym
    Algebra Calculator Mathway
    Www.metaquest/Device Code
    Www.craigslist Augusta Ga
    Phenix Food Locker Weekly Ad
    Day Octopus | Hawaii Marine Life
    Whitley County Ky Mugshots Busted
    Nj Scratch Off Remaining Prizes
    Gwdonate Org
    Playgirl Magazine Cover Template Free
    Tcu Jaggaer
    Ostateillustrated Com Message Boards
    Missouri Highway Patrol Crash
    Iroquois Amphitheater Louisville Ky Seating Chart
    Nz Herald Obituary Notices
    Busted Mcpherson Newspaper
    Low Tide In Twilight Ch 52
    Cognitive Science Cornell
    Craftybase Coupon
    Does Royal Honey Work For Erectile Dysfunction - SCOBES-AR
    Bursar.okstate.edu
    Shiftwizard Login Johnston
    Cars And Trucks Facebook
    Maybe Meant To Be Chapter 43
    Keeper Of The Lost Cities Series - Shannon Messenger
    Craigslist Georgia Homes For Sale By Owner
    Muziq Najm
    State Legislatures Icivics Answer Key
    Ursula Creed Datasheet
    What Is Kik and Why Do Teenagers Love It?
    Sept Month Weather
    Ursula Creed Datasheet
    Wasmo Link Telegram
    Directions To Cvs Pharmacy
    Best GoMovies Alternatives
    814-747-6702
    Memberweb Bw
    Embry Riddle Prescott Academic Calendar
    Squalicum Family Medicine
    Hillsborough County Florida Recorder Of Deeds
    Theater X Orange Heights Florida
    Bedbathandbeyond Flemington Nj
    Barber Gym Quantico Hours
    Osrs Vorkath Combat Achievements
    Strange World Showtimes Near Century Federal Way
    Public Broadcasting Service Clg Wiki
    Kobe Express Bayside Lakes Photos
    Craigslist Farm And Garden Missoula
    Unity Webgl Extreme Race
    Latest Posts
    Article information

    Author: Gregorio Kreiger

    Last Updated:

    Views: 5499

    Rating: 4.7 / 5 (57 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Gregorio Kreiger

    Birthday: 1994-12-18

    Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

    Phone: +9014805370218

    Job: Customer Designer

    Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

    Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.